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The regularization method combined with the generalized cross-validation (GCV) approach 
is used to solve the problem of inverse heat conduction involving the determination of 
the strength of a surface heat source located inside a plate. The advantage of the present 
approach lies in the fact that the GCV method allows the determination of the optimum 
value of the regularization parameter. Numerical experiments are presented to show that 
the value of the regularization, =, determined in this manner is indeed optimum. 
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I n t r o d u c t i o n  

The direct heat conduction problems are concerned with the 
determination of temperature at interior points of a region when 
the initial and boundary conditions and heat generation are 
specified. In contrast, the inverse heat conduction problem 
(IHCP) involves the determination of the surface conditions, 
energy generation, properties, etc., from the knowledge of the 
temperature measurements taken within the body. 

Various approaches are available to solve the inverse prob- 
lems, ~ and the regularization methods 2"3 appear to be very 
promising. In this approach, a proper regularization term needs 
to be added to the sum-of-squares error term in order to 
stabilize the solution. Presently there is no way to estimate the 
optimum value of the regularization parameter by using the 
measured data only. All the existing work on this subject 
requires that the noise level in the data should be known. 3-s 
Because of this restriction, the available approaches are not 
practical. 

The generalized cross-ventilation (GCV) method has been 
used in areas including smoothing noise data, 6 spline smooth- 
ing, 7 choosing a good ridge parameter, s and dynamic program- 
ming 9 to stabilize the solution. Recently the method had been 
tried in solving the inverse heat conduction problems ~°-13 by 
the application of the dynamic programming approach. 

In the present work, we apply the GCV method directly to 
the least squares equation approach for the solution of linear 
inverse heat conduction problems and show that the combined 
method is very fast and easy to apply for these solutions. Once 
the optimal value of regularization parameter is determined, 
the inverse solution process does not require iterations. 

analysis is concerned with the determination of the strength of 
this unknown energy source as a function of time from the 
transient temperature recording taken at the wall. The math- 
ematical formulation of the problem is given by 

O2T(x, t) ~_| G(t) 6(x -0 .5 )=  10T(x, t) (la) 
~x 2 k 2 ~t 

c~ T(O, t) 
- - = 0  at x=O (lb) 

~x 

~T(1, t) 
- - = 0  at x =  1 (lc) 

~x 

T(x, 0)=0  at t=O (ld) 

where the thermal diffusivity, 2, and the thermal conductivity, 
k, are assumed to be constant, and the unknown plane surface 
heat source G(t) is located at x=0.5. Here c~ is the Dirac delta 
function and the source G(t) varies continuously over time. 

With one sensor placed at the boundary x = 1, and temper- 
ature measurements taken at times t~, j =  1, 2 . . . .  , M,  there is 
a total of M measurement data. The objective of this study is 
to determine the unknown strength of the source G(t) by 
utilizing these M temperature data obtained at x = 1. 

Inverse solut ion by regular iza t ion  m e t h o d  

The direct problem given by Equations 1 is solved by the 
Crank-Nicolson method. The regularization method used to 
solve the inverse problem is described below. 

Prob lem f o r m u l a t i o n  

A slab of unit thickness is initially at zero temperature. For 
time > 0, a continuous plane surface heat source of unknown 
strength G(t), located at specified position x=0 .5 ,  releases its 
energy continuously, while the boundary surfaces at x = 0.0 and 
x =  1.0 are both kept insulated (see Figure 1). The inverse 
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The regularization method is a modification of the sum-of- 
squares function with the addition of the regularization terms. 
These additional terms have a smoothing effect on the internal 
heat source components by acting to minimize the effects of 
noise data. 

Scott and Beck 1. have shown that as the order of regular- 
ization increases, the bias errors decrease and the variance 
increases. Thus the zero-order regularization has higher bias 
errors, while the second-order regularization is more sensitive 
to the random errors• Therefore as a compromise, the first-order 
regularization is chosen in this work. 

The whole-domain first-order regularization procedure for a 
single sensor is given in matrix form as 1 

S = ( Y -  T ) r ( Y - T )  + cc(Hlg)r(Hlg) (2) 

where the scalar = is the regularization parameter, Y and T are 
the measured and estimated temperature vectors, respectively, 
g is the estimated heat source vector, and H1 is a square matrix 
associated with the first-order regularization procedures and is 
given by 

0 
H i =  0 

0 

1 0 0 . . .  0 7 

- 1  1 0 . . .  
- 1 (3) 

0 0 0 u × u  

Later in the analysis we shall need HrH1, which is determined as [ looo ...... o] 
- 1  2 - 1  0 0 . . . . . .  0 

HtrHl= 0 - 1  2 - 1  0 . . . . . .  0 

0 - 1  2 - 1  

0 0 - 1  1 u x u  

(4) 
Equation 2 is minimized with respect to g (where g=g~, 

j = 1, 2 . . . . .  M), and then rearranged in the form 

X r ( Y -  T) = ~HrHtg (5) 

where X is the sensitivity coefficient matrix defined by 

X ~ dT/ag r (6) 

A Taylor series expansion of T with respect to an arbitrary 
value of the generation go, gives 

8T 
T = T o + ~ g  (g-go)  (7) 

where To is the value of temperature resulting from a generation 
go. Therefore if we let go=0,  then To becomes Tit=o=0. We 
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now introduce these values of go = 0 and To = 0 into Equation 7 
and the resulting expression into Equation 5 and solve for g 
to obtain 

g = [XrX + ~HlrH1] - tXrY (8) 

The sensitivity coefficient matrix defined by Equation 6 can be 
expressed explicitly as 

~T, #TI 

691 892 
~T2 eT2 

X= ag I ~3g 2 

8Tu 8Tu 

_.891 Og2 

m 

~gT~ 

8gu 

8gM 

~T~ 

M x M  

(9) 

Since temperature calculation at any given time is independent 
of future heat source values, the upper diagonal terms in 
Equation 9 become zero• For the linear problem considered 
here, the application of Duhamel's theorem with constant 
heat source assumption over each time step, the X matrix is 
simplified as 1. 

F V~Po 0 0 0 . . .  0 7 

] V~l V4~o 0 0 . . .  ] X = ]  Vcp2 V4h V$o 0 ... (10) 

/ 
Lv4,,.,-, v4,.,-2 V¢o u ~ ,  

where Vq~-= q~j + 1 - -  ~ j  and q~j is the temperature rise associated 
with a unit step increase in the internal heat source, i.e., G(t) = 1 
in the heat conduction problem (Equations 1). The temperature 
rise q~j is calculated by solving these equations with the 
Crank-Nicolson method• 

If the regularization parameter ~ is known, Equation 2 can 
be minimized with respect to g and the inverse solution for g 
is obtained from Equation 8, since the sensitivity coefficient 
matrix X and HtrH1 are available from Equations 10 and 4, 
respectively• 

Now the question arises regarding the choice of the optimal 
value of the regularization parameter ~ that minimizes the 
modified sum-of-squares error equation (Equation 2). This 
matter is discussed in the next section• 

Generalized cross-validation approach 

In this work, the optimal regularization parameter ~ is defined 
as the one that minimizes the sum-of-squares error between 

Notation 

A Global influence matrix 
G True strength of the internal surface heat source vector 
g Estimated strength oftbe internal surface heat source 

vector 
H1 First-order regularization matrix 
k Thermal conductivity 
S Sum of square error for first-order regularization 

procedure 
T Estimated temperature vector 
V Generalized cross-validation function 

X Sensitivity coefficient matrix 
Y Measured temperature vector 

Greek 

6 

2 
G 

f~ 

symbols 
Regularization parameter 
Dirac delta function 
Thermal diffusivity 
Standard deviation of measurement temperature 
Temperature vector for unit-step internal plane heat 
s o u r c e  

Sum of square error between the heat source function 
G and g 
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true heat source G(t) and estimated heat source g(t): 

fl(~)=(G-g)r(G-g) (11) 
but in a real situation, f~(¢) cannot I x  computed because the 
true internal heat source G(t) is unknown. This is where GCV 
method enters. 

The basic approach in the determination of the optimum 
value of the regularization parameter ~ with the GCV method 
is as follows: 

First determine the value of %pt that minimizes the function 
V(~): 6,8 

1 
[ Y -  A ( ~ ) Y ] r [ Y -  A(~t)Y] 

V(a) = (12) 
[ ~ -  T , ( I -A(a)) I  2 

where T,(O) is the trace of a matrix (i.e., the sum of the 
diagonals), and the matrix A(=) is a global influence matrix 
that will be discussed later. 

If %pt determined in this manner is indeed the optimal value 
of a, it should also be the optimal value of =opt that minimizes 
Equation 11. Craven and Wahba 6 and Golub s have proved 
that minimizing V(=) is essentially the same as minimizing [2(~). 
The validity of such a result will also be shown by numerical 
experiments in the Results and Discussion section. 

Therefore, the optimum value of the regularization parameter, 
%pt, is determined from Equation 12 and used in Equation 8 
to obtain the inverse solution. The problem now is reduced to 
that of determining aopt from Equation 12. This is done in the 
following manner. The first step in the analysis is to develop 
an explicit expression for the computation of the global 
influence matrix A(=) appearing in Equation 12. The matrix 
A(=), which relates the measurement data Y to the estimated 
temperature T, is defined by 

T=A(c0Y (13) 

If we assume go = To = 0, then Equation 7 reduces to 

T = X g  (14) 

Introducing Equation 8 into Equation 14, we obtain 

T = x [ x r x  + ~HrH1] - IxTy (15) 

A comparison of Equations 13 and 15 reveals that 

A(a) = x [ x r x  + aHrH1]-  lXr (16) 

The value of Met) computed from Equation 16 is introduced 
into Equation 12, and the cubic interpolation is used to 
minimize V(~t) to obtain ~opt. In this scheme, V(ct) defined 
by Equation 12 is evaluated for consecutive decreasing (or 
increasing) values of ~t until V(~) starts to increase. This value 
of ct, together with its three previous values, are used to 
determine the four unknown coefficients in the cubic repre- 
sentation of V(~). The resulting functional form of V(~) is then 
used to compute aop t by setting dV(~)/dot = 0. The optimal value 
of aop t established in this manner is used in the least squares 
method to find the heat source function g(t) that minimize 
Equation 2. 

R e s u l t s  a n d  d i s c u s s i o n  

To illustrate the application and the usefulness of the GCV 
method, we consider two specific examples involving the 
prediction of the timewise variation of the strength of a plane 
surface heat source, located at the midpoint of a plate, from 
the knowledge of transient temperature recordings taken at the 

boundary surface. Initially the plate is at zero temperature, and 
for time t>0 ,  both boundaries are kept insulated. We have 
chosen a triangular variation over time for the source strength 
in the first example and a sinusoidal variation in the second 
example. In both of these examples, the measurement time step 
is taken as 0.06. 

Numerica l  example  1 

Consider a slab of thickness L = 1. The final time is taken as 
t s = 1.8 and the timewise variation of the strength ofthe internal 
plane heat source G(t) located at x=0.5  is defined as 

I 0 0 < t < 0 . 3  

t - 0 . 3  0.3 <_t <0.9 (17) 
G ( t ) = / 1 . 5 - t  0.9_<t < 1.5 

~. 0 1.5<t 

which represents a triangular variation over time. 
In finite differencing with space increment dx = 0.02, the time 

increment is chosen as dt=0.03 instead of dr=0.06 in order to 
improve the accuracy of computations. In these calculations, 
all properties are taken as unity. A random noise level of tea 
was added to the simulated exact temperature to generate the 
measured temperature data, i.e., 

Ym ...... d= Ye,== + am (18) 

where a is the standard deviation of measurement errors and 
is taken as a = 0.001 and the values of co are calculated randomly 
by the IMSL subroutine DRNNOR, Is which uses normal 
distribution errors. In the present calculation, the value of w 
is chosen over the range -2.576 < co < 2.576, which represents 
the 99% confidence bound for the measurement temperature. 
The maximum temperature rise in this example is 0.36; therefore 
a = 0.005 represents about 1.4% error to the maximum temper- 
ature rise. 

To show the validity of the GCV method, we use cubic 
interpolation to determine the optimal value of regularization 
parameter %pt that minimizes V(~) defined by Equation 12. 
Similarly, we use cubic interpolation to determine the optimal 
value of regularization parameter ~opt that minimizes fl(~) 
defined by Equation 11. They are in close agreement. To 
illustrate this matter, in Figure 2 we present plots of fl(~) and 
V(~) versus ct. This shows that the value of ~opt determined from 
the minimization of V(~) can be used as the %pt needed in the 
inverse analysis. 
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Figure 3 Internal plane heat source for Example 1 for <r=0.001 
(=,= = 1.1 3 x 10 -3) 
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Figure 4 The effectiveness of c< to the inverse solution for e = 0,001 

Numer i ca l  example 2 

The second example is also for a slab as considered in Example 1, 
but the timewise variation of the heat source is taken in the form 

G(t)= n It .3-1H 0 . 3 < t <  1.5 (19) 

1.5<t  

which represents a sinusoidal variation over time. The space 
and time increment and properties are the same as those used 
in Example 1. The maximum temperature rise in this example 
is 0.38; therefore, a=O.O05 represents about 1.3% error to the 
maximum temperature rise. 

The resulting fl(u) and V(g) for a standard deviation (r = 0.001 
are shown in Figure 7, while the inverse solution is shown in 
Figure 8. The optimal value of regularization parameter C(opt 
was determined a s  ~opt =2.21 x 10 -4. Similar results for cr = 0.005 
(gopt = 1.71 x 10 -3) are shown in Figures 9 and 10. 

The above numerical experiment illustrates that minimizing 
V(~) is essentially the same as minimizing fl(=) for moderate 
measurement errors. When the measurement errors are large, 
the optimal values of the regularization parameter gopt for V(~) 

3.40e-5 0.036 

3.20e-5 - V • 0.034 

• 0.032 
3.00e-5 • 

• 0.030 

2.80e-5 - 

• 0.028 

2.60e-5 - 
.0 .026  

2.40e-5 - - 0.024 

2.20e-5 • , • , • . • , • , . 0.022 

0 . 0 0  0.01 0 . 0 2  0 . 0 3  0 . 0 4  0 . 0 5  0 . 0 6  

Q 

Figure 3 shows a plot of the generation function g(t) 
determined by the inverse analysis compared with the exact 
value of G(t) for a standard deviation a = 0.001. The agreement 
between the estimated and exact values of the source function 
is excellent, i.e., the maximum error in the inverse solution 
including the deterministic and the stochastic errors is under 
8%. In these calculations, the optimal value of the regularization 
parameter aopt determined from the minimization of the function 
V(<x) was (Xopt = 1.13 x 10 -3. 

The choice of ~ is critical to the inverse solution, as shown 
by Figure 4. In this figure we notice that if g is too small the 
inverse solution will oscillate (see dotted line) and if g is too 
large the inverse solution will deviate from exact solution too 
much (see chain dotted line). Only when ~=~opt is the best 
solution obtained (see dashed line). 

To examine the effects of the measurement errors, the 
experiment was repeated with a larger value of a, i.e., a = 0.005. 
Figure 5 shows that the computed results for V(=) are not 
exactly the same as for ~(~), but they are still in the same range; 
besides, despite a large increase in the standard deviation, the 
results are consistent with those given by Trujillo and Busby.t3 
The resulting inverse solution with C(op, = 8.99 x 10-3 is shown 
in Figure 6. As expected, increasing the measurement errors 
decreases the accuracy of the inverse solution. 

Figure 5 
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Variance of f~ and V with parameter • for Example 1 for 
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Figure 6 Internal plane heat source for Example 1 for a=0.005 
(=o= = 8.99 x 10-3)  
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Figure 10 Internal plane heat source for Example 2 for ~=0 .005  
(=o~= 1.71 x 10 -3) 

Conclusions 

An efficient inverse method of analysis, utilizing the GCV 
method to determine the optimal value of regularization 
parameter ~om, is presented for the estimation of the unknown 
strength of a plane internal surface heat source O(t) located 
inside a flat plate. 

The advantage of generalized cross-validation (GCV) method 
lies in the fact that no information other than the measurement 
data itself is needed. Even with large measurement errors, the 
method still yields good estimates for the optimal value of the 
regularization parameter ~opt"  

t sec 

Figure 8 Internal plane heat source for Example 2 for e=0.001 
(=o~,=2.21 x 10 - ' )  
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Figure 9 
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Variation of t3 and V wi th parameter = for Example 2 for 

and f~(u) will be deviate, but  they are still in the same range 
and still provide good estimates for the optimal value of the 
regularization parameter, 

When a large number  of time steps are required, this 
algorithm can be arranged as the Sequential Optimal Regular- 
ization Method. 
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